Integer Explorer Help
Expression Analyzer
operation | notation | remarks |
positive | +a | unary plus |
negative | -a | unary minus |
addition | a+b | plus |
substraction | a-b | minus |
multiplication | a*b | times |
remainder | a%b | modulo |
integer division | a/b | over (integer result) |
exponention | a^b | power |
function | notation | remarks |
factorial | n! | up to n = 170 |
permutation or arrangement | P(n, r) | n ⩾ r |
combination or binomial coefficient (choose) | C(n, r) | n ⩾ r |
Greatest Common Divisor | GCD(a, b, …) | at least one parameter |
Least Common Multiple | LCM(a, b, …) | at least one parameter |
minimum | Min(a, b, …) | at least one parameter |
maximum | Max(a, b, …) | at least one parameter |
sum | Sum(a, b, …) | at least one parameter |
product | Prod(a, b, …) | at least one parameter |
integer square root | SqRt(a) | integer result |
integer cubic root | CbRt(a) | integer result |
random integer | Rand(n) | between 1 and n included |
For functions taking one parameter or more, parentheses are mandatory.
For functions taking exactly one parameter, they are optional.
sequence | notation | remarks |
prime | Prime(n) | up to n = 1000 |
repunit (Rn is written with n repeated 1s in decimal numeral system) | R(n) | up to n = 309 |
Mersenne (Mn = 2n-1) | M(n) | up to n = 1024 |
Fermat (Fermatn = 22n+1) | Fermat(n) | up to n = 9 |
Fibonacci (F0 = 0, F1 = 1 and Fn = Fn-1 + Fn-2) | F(n) | up to n = 299 |
triangular numbers (Tn = n(n+1)/2) | T(n) | up to n = 2512 |
For sequences, parentheses are optional.
Examples
r(r2) | |
r15/r3/r5 | |
gcd(r6, 142857) | |
prime200*prime201 | semi-prime |
18!+7 | can take more than 1 second but not much more |
170! | huge number but very fast to factorize! |
f60+f61 | the sum of 2 consecutive Fibonacci numbers is a Fibonacci number |
P(123456, 4)+1 | P(n, 4)+1 = n×(n+1)×(n+2)×(n+3)+1 is always a square |
318665857834031151167461 | Miller-Rabin strong pseudoprime |
7323711140672471990827043 | rather large semiprime |